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Computer Simulation of Creep and Fracture 
of Highly Drawn Polymers 
M. G. ZAITSEV and S. A. STREMYAKOV 
Moscow Pedagogical State University, 1 M. Pirogovskaya, Moscow 1 19882, Russia 

and 

S. A. GORDEEV 
Research Institute of Synthetic Fibers, Tver' 170032, Russia 

A computer kinetic model was proposed describing creep and fracture of @e microfibrilla in the drawn 
semicrystalline polymer and allowing for the concurrent and interrelated processes of slippage of polymer chains, 
redistribution of the polymer units between the amorphous regions and chains scissions. A self-consistent system 
of non-linear kinetic equations for tie chains length distribution function was written and its numerical analysis 
was made with a computer. As a result, a stress-strain curve for a single microfibrilla and an averaged curve for a 
high drawn polymer fiber were obtained. Also a portion of tie chains scissions and the concentration of defects 
in crystallites as a function of fiber deformation were obtained. 

KEY WORDS Creep, fracture, high drawn semicrystalline polymers, computer simulation. 

INTRODUCTION 

Experimental investigation into the structure of drawn polymers under load'i2 shows that 
the mechanical properties as well as the kinetics of failure and deformation are largely 
determined by the structure of the intrafibrillar amorphous regions. For the mechanical 
processes the most important characteristics of the amorphous region are a portion of tie 
chains and their length distribution. The length distribution density p( 1 )  and the strength 
of drawn polymers were experimentally found to concur?-6 Two models were considered 
in interpreting the published experimental data. In one model the tie chains were taken 
as rigidly fixed at the boundary of cry~tal l i tes . '~~-~ In the other, slippage of the chains 
through the crystallite was assumed to take p l a ~ e . ' ~ ~ ~ ~  The model of rigidly fixed chains of 
different length was carefully analyzed in the theoretical studies.*-" Pulling out of a part 
of a single chain from the crystallite was theoretically analyzed in the studies."-'3 The 
slippage of the chains through a crystallite, when high stresses are applied to the sample, 
was experimentally ~onfirmed. '~? '~ 

The studies presented here describe fiber creep and fracture in drawn polymers based 
on computer simulation of the evolution of tie chains length density distribution p(Z) in 
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FIGURE 1 
adjacent amorphous regions. 

Polymer chain in a microfibrilla model for (a) unstressed and (b) stressed chain segments in the 

microfibrilla amorphous regions with allowance made for interrelated slippage and scission 
of tie chains occurring concurrently. 

The kinetic model and the results from the computer simulation of the stretching of a single 
microfibrilla in drawn polymer were previously described in detai1.l6>I7 

Let us assume that recryst,allization and additional growth of the crystallites do not 
take place in the course of deformation of the microfibrilla. Thus the evolution of the tie 
chains length density distribution is governed only by the redistribution of the polymer 
units between the amorphous iregions and by pulling the units out of the crystallites. We 
also assume that the pulling of one chain unit out of the crystallite and the rupture of the 
stressed chain are caused by thermal fluctuations. The mean expectation time of these acts 
is: 

where T is the temperature, u ( z )  is the activation barrier for slippage or scission of the 
chain which depends on the deformation of the stressed chain segment in the amorphous 
region (Figure 1). In the preseint study it is assumed that 

U(X) = u; (1 - +) , 
Xmax 

where ui is the activation barrier of slippage or scission for the unstressed chain, &,a is 
the deformation of the chain art which the activation barrier u(x) tends to zero (index j 
is explained below). The data"-13 evidence that the pulling of the chain unit out of the 
crystallite results in the formation therein of the one-dimensional dislocation. There are 
two possibilities here. 
(i) If the chain passes through the crystallite and enters the adjacent amorphous region with 
the unstressed chain segment (Figure la), the dislocation moves through the crystallite and 
emerging on its opposite surface. This pulls the chain unit of the unstressed chain in the 
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1 (arb. units) 
FIGURE 2 Evolution of the tie chains length distribution at t = 0 (curve l), 1 = tl (curve 2), t = t z  (curve 3). 
12 > tl > 0. 

adjacent region into the crystallite, i.e. it will result in the redistribution of the polymer units 
between the regions. As the microfibrilla is stretched further, the process may recur. In 
such a case, for as long as the chain segment in the adjacent region remains unstressed, the 
parameters ui and zi, of the potential barrier for slippage of the chain remain unchanged. 
(ii) If the chain segment in the adjacent region is stressed or the chain in the crystallite 
forms a fold (Figure lb) the dislocation inside the crystallite ceases. This impedes the 
pulling of the stressed chain segment in the amorphous region on further stretching of the 
microfibrilla. The activation barrier and the maximum deformation for each subsequent 
chain unit pulled out of the crystallite is higher than for the preceding one,l3 i.e. ui > ui-’, 
z,, > &,z (j is the number of the chain units pull by the stressed chain segment out of 
the crystallite into the amorphous region). 

It is assumed in the model that after k chain units have been pulled out of the crystallite, 
the barrier for the subsequent extension becomes higher than that of the chain scission. 
This results in the chain scission. The input parameters of the model are as follows: (i) the 
activation barriers of slippage and scission in the chain (and their force relationships); 
(ii) the initial tie chains length density distribution p(Z,O). The kinetic equations for 
p(Z, t ) ,  were given earlier16 for root-mean square deviations S of p(Z, 0), here t is time. 
It is these equations that form the basis for the computer simulation. 

j 

COMPUTER S1 MU LATl ON RESULTS 

Figure 2 presents the curves of the tie chains length density distribution at various values 
of microfibrilla deformations (various deformation times in the mode 6 = const). It is 
seen that the slippage of the chains through the crystallite results in a sharp peak on the 
function p(Z,  t )  in the region of the short chains which shifts towards the greater values 
of length as microfibrilla deformation grows. It is of interest that at medium deformations 
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0 40 

FIGURE 3 Theoretical stress-strain curves: absolutely stable crystallites (curves 1, 3), possible crystallite 
amorphization (curves 2, 4). Root-man-square deviations of the p( l , O ) :  b = 2.3 (curves 1, 2), 6 = 3.6 
(curves 3.4). 

the tie chains length distribution turns out to be bimodal, which agrees with the results 
of the NMR-e~periments.~ As p(Z, t )  gets narrower, the microfibrilla becomes stronger. 
However, after the chain pulling out of the crystallite is exhausted, a portion of the chain 
scissions tends to grow in magnitude. This results in the maximum (or a long plateau) on 
the relationship r( E )  of the microfibrilla (in the mode 6 = const, Figure 3). The value 
of this maximum corresponds to the strength of the microfibrilla at the preset E and initial 
length distribution p( 1 ,  O), since at E > E,, the fibrilla with equal amorphous regions is 
unstable and its further stretching results in a rapid localization of fracture in one of the 
amorphous regions. 

The latter result is indisputalbly true, assuming that the crystallites are quite stable and at 
any stage of the microfibrilla stretching they ensure the preset potential barriers for pulling 
the chain units. However, the a~nalysis’~ has revealed another possibility for microfibrilla to 
lose stability. Accumulation within the crystallites of the one-dimensional dislocations that 
cannot move onto the crystallite surface may cause amorphization of the crystallites. As a 
result they will cease acting as ‘”clamps” for chain segments in the amorphous regions. As is 
seen from Figure 3, the stress-strain curves look different, provided this process is taken into 
account. The analysis of the data in Reference 17 shows that the fracture of the amorphous 
regions is realized only in case of wide initial length distributions and high barriers of 
slippage. In the case of the initial distributions and the barriers characteristic of 
non-polar intermolecular interactions (specific for highly drawn polyethylene) the fibrilla 
loses stability due to amorphization of crystallites. 

COMPARISON WITH EXPERIMENT 

When comparing the results of the computer simulation with the experimental data, account 
should be taken of the nonuniformity of loading of microfibrillae in the real fiber. Let us 
assume that the nonuniformity of loading is mainly caused by the scatter of the longitudinal 
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FIGURE 4 Stress-strain curve of an individual microfibrilla at 6 = 2.3 (curve I), average stress-strain curve 
of a fiber (curve 2), and the example of microfibril strain distribution f( e )  (curve 3). 

dimensions of crystallites. Experimental data'* show that in the drawn polyethylene 
the dimensions of crystallites are well approximated by r-distribution. This allows the 
assumption that the strain distribution of microfibrillae is I?-distribution too: 

where r (p )  is gamma function, a and p are parameters of the distribution (a  > 0, 

The transfer to the description of the process of the fiber stretching is performed by 
averaging the curve of a single microfibrilla stretching with due regard to the density 
distribution f( E ) .  

P > 1). 

a(€ )  = (4) 

provided that 

where €0 corresponds to the value of E in maximum f( E ) .  Outside the interval ( td,  <ma) 
f( E )  is negligibly small ( I f (  E )  I < 

Figure 4 shows the stress-strain curve obtained as a result of such averaging. It is 
obvious that the o( E )  curve flattens revealing the plateau corresponding to the viscous 
flow of the fiber. 

It is natural that the shape of the stress-strain curve is strongly affected by the param- 
eters of the distribution f( E),  which reflects the difference in supermolecular structure 
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FIGURE 5 (a) Theoretical and (b) experimental suess-strain curves at various deformation rates. 
i = 5 X s-' (curve l), i = 5 x s-' (curve 2). i = 5 x s-l (curve 3). Draw ratio X = 36. 

parameters of the fibers obtained in a different way. Figure Sa shows the calculated stress- 
strain fiber curves at various rates of deformation. These theoretical results are in good 
qualitative agreement with the experimental data for polyethylene samples obtained by the 
gel-technology method (Figure Sb). 

Both the experimental and iinalytical relationships between the strength and the rate of 
deformation within a wide range of extensions (Figure 6a, b) are represented by parallel 
straight lines. It is noteworthy that from the viewpoint of the elementary kinetic strength 
theory the strength-rate of deformation function is described by equation 

where UO, 7 are the parameters of Zhurkov's equation.' It is generally assumed that the 
greater the draw ratio and the narrower the tie chains length distribution, the smaller 
the value of 7. Thus from the viewpoint of the elementary kinetic strength theory the 
relationships between u and In( i / i o )  should not be parallel at various draw ratios. 

The present study suggests., however, that the failures of the elementary theory should 
not question the effectiveness of the kinetic approach as such to the description of creep 
and fracture of highly drawn polymers. 
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FIGURE 6 Fiber strength-deformation rates curves at 60 = 5.0 x s-I. (a) Theory 6 = 0.2 (curve l), 
6 = 0.7 (curve 2), 6 = 2.3 (curve 31, 6 = 3.6 (curve 4); (b) Experiment, X = 12 (curve l), X = 24 (curve 2), 
A = 36 (curve 3), X = 48 (curve 4), X = 60 (curve 5). 
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